Вход //Регистрация

Яндекс.Метрика
Главная arrow Радиолюбительские схемы arrow Источники питания arrow Стабилизированный полумостовой импульсный блок питания.
Популярное

Стабилизированный полумостовой импульсный блок питания.

(20 голосов)

Устройство предназначено для нагрузок, требующих двуполярного напряжения питания. Предлагаемый блок отличается простотой и применением более распространенных деталей.
Основные технические характеристики
Напряжение сети, 170...250 В
Мощность, отдаваемая в нагрузку, 200 Вт
Выходное напряжение, 2x24 В
Частота   преобразования, 60 кГц

tl494.jpg

    Напряжение сети через терморезистор RK1, ограничивающий пусковой ток, и помехоподавляющий фильтр L1C2—С4 поступает на диодный мост VD1. Выпрямленное напряжение, сглаженное конденсатором С5, питает полумостовой преобразователь на транзисторах VT1, VT2. В диагональ моста, образованного   этими   транзисторами и конденсаторами С9, С10, включена обмотка I импульсного трансформатора Т1. Резисторы R4 и R5 выравнивают напряжение на конденсаторах С9 и С10 во время работы блока питания, а также разряжают конденсаторы С1, С5, С9, С10 после выключения питания. Резистор R3 — датчик тока, потребляемого преобразователем.
   Кроме этого, напряжение сети через балластный конденсатор С1 поступает на выпрямитель — параметрический стабилизатор VD2VD3C6, который питает узел управления, собранный на ШИ контроллере DA1 и усилителе DA3.
   Микросхема TL494 (DA1), включена по типовой схеме. Конденсатор С14 и резистор R16 задают частоту генерации. Конденсатор С12 и резистор R6 определяют параметры мягкого запуска. Остальные элементы, подключенные к ШИ контроллеру DA1, задают начальные условия и частотную коррекцию цепей обратной связи. В цепи обратной связи действуют два сигнала. Первый из них поступает с делителя напряжения, образованного фототранзистором оптрона U1.1 и резистором R9, на вход 1IN+ ШИ контроллера. Этот сигнал пропорционален отклонению выходного напряжения от заданного. Второй сигнал поступает с резистора R3 (датчика тока) через резистор R13 на вход 2IN+ ШИ контроллера и ограничивает входной ток преобразователя. Пока последний не превышает допустимого порогового значения, обратная связь стабилизирует выходное напряжение. Когда напряжение на резисторе R3 достигнет порога, который задает делитель образцового напряжения R7R14, начинается ограничение выходного тока.
Цепь обратной связи по напряжению построена по типовой схеме на оптроне U1 и микросхеме DA2. Стабилизация напряжения и ограничение тока осуществляются изменением длительности импульсов, управляющих коммутирующими транзисторами преобразователя. Эти импульсы поступают на вход усилителя DA3. Особенность схемы включения этой микросхемы — наличие конденсатора вольтдобавки С19 для питания узла, управляющего транзистором VT1. Это исключает необходимость использования независимого изолированного источника для его питания. Когда транзистор VT2 открыт, конденсатор С19 заряжается через диод VD8 до напряжения питания (около 15 В). Когда транзистор VT2 закрывается, напряжение на выводе 6 микросхемы DA3 скачком увеличивается до напряжения на истоке транзистора VT1. Выходной каскад усилителя потребляет большой ток только на перепадах импульсов во время перезарядки емкости затвор—исток транзистора VT1. В остальное время потребляемый ток существенно меньше, поэтому указанная на схеме емкость конденсатора С19 достаточна для питания выходного каскада в течение полупериода.
   ШИ контроллер исключает возникновение сквозного тока через транзисторы VT1 и VT2.
   Устройство собрано на односторонней печатной плате из фольгированного стеклотекстолита.

 

 tl494_lay.jpg

Транзисторы VT1 и VT2 установлены на теплоотводах с площадью охлаждающей поверхности 45 см2 каждый через изолирующие теплопроводные прокладки. Диоды выходного выпрямителя VD4—VD7 установлены на один теплоотвод площадью 125 см2 через изолирующую прокладку. Выводы обмотки II трансформатора Т1 припаяны непосредственно к соответствующим выводам этих диодов. Выводы резисторов R4 и R5 припаяны к соответствующим выводам конденсаторов С9 и С10 на стороне печатных проводников. В конструкции автора использовано естественное охлаждение, поскольку блок питания не эксплуатируется постоянно на максимальной мощности.
   Трансформатор Т1 — в броневом магнитопроводе Б-36 без зазора из феррита 2000НМ. Обмотка I содержит 21 виток провода ПЭВ-2 0,6. Обмотка II — 5+5 витков медной ленты прямоугольного сечения 12x0,15 мм, обернутой лакотканью. Другой возможный вариант — жгут из шести проводов ПЭВ-2 0,6. Экран — незамкнутый виток фольги.
   Дроссель L1 — PLA10 производства фирмы MURATA. Терморезистор SCK103 (RK1) можно заменить на SCK105. Допустимо применить дроссель и терморезистор  о компьютерного блока питания. Стабилитрон КС515А (VD3) заменим импортным 1N4744A, а диод FR155 (VD8) — FR157. Оптрон РС817 (U1) можно заменить на РС816, LTV816, LTV817.
   В устройстве применены импортные оксидные конденсаторы: С5 — из серии EHL, специально предназначенной для импульсных источников питания; С15, С16 — с низким значением ЭПС (эквивалентного последовательного сопротивления) одной из серий EXR, ESX, ERS, ESG; С6, С12 — серии ECR общего назначения. Конденсаторы С7, С8, С17—С19 керамические, остальные — пленочные. Номинальное напряжение конденсаторов С1 и СЗ — 630 В; С2, С4, С9, С10 — не менее 400 В. Резисторы — МЛТ, С2-33.
   Налаживание рекомендую проводить в два этапа. На первом этапе смонтируйте все элементы, кроме Т1, VT1, I VT2, VD4—VD7. Для обеспечения безопасности необходимо исключить гальваническую связь с электросетью, поэтому блок питания включите через маломощный разделительный трансформатор. На этом этапе проверьте работоспособность отдельных узлов. Установите частоту импульсов ШИ контроллера подбором элементов R16, С14 в диапазоне  50...70 кГц. С помощью лабораторного источника питания сымитируйте сигналы  обратной связи, изменяя ток через резистор R3 и излучающий диод оптрона U1.2. Проверьте, что с их увеличением  возрастает скважность импульсов ШИ  контроллера. Подбором резистора R7  установите порог ограничения тока. Затем припаяйте полевые транзисторы VT1, VT2 и проверьте, что форма импульсов напряжения на их затворах относительно истоков близка к прямоугольной.
   На втором этапе смонтируйте остальные элементы и включите блок питания в сеть без разделительного трансформатора. Подбором резистора R17 установите номинальное выходное напряжение. При большой скважности импульсов может потребоваться увеличить емкость конденсаторов С11 С13 в несколько раз. Завершают налаживание проверкой работы блока питания под нагрузкой, вплоть до максимальной мощности.
   Другое номинальное выходное напряжение можно получить изменением числа витков обмотки II трансформатора Т1 и сопротивления резистора R17 Может возникнуть необходимость подбора сопротивления резистора R19, чтобы ток через излучающий диод оптрона U1.2 не превышал 20 мА. Изменить мощность можно применением других элементов, в том числе импульсного трансформатора.

А. Кривецкий; Радио№8,2006

 

 

Комментарии 

 
#1 Игорь 1300 19.02.2012 17:21
Cхема практична,хоть немного сложновата по сравнению с обратноходовыми БП :-)
 
 
#2 Довженко 30.09.2012 14:43
А печатка с чего???? :sad:
 
 
#3 Ю/S 01.01.2013 12:33
Цитирую Игорь 1300:
Cхема практична,хоть немного сложновата по сравнению с обратноходовыми БП :-)

обратноходовый наиболее просто с точки зрения количества компонентов. Но макс. КПД в районе 87-89% в основном. Однотактные прямоходы наиболее энергоэффективн ы
 

Комментарии могут оставлять только зарегистрированные пользователи

< Пред.   След. >