Вход //Регистрация

Яндекс.Метрика
Главная arrow Радиолюбительские схемы arrow Сетевой ИБП мощностью до 2000Вт для УМЗЧ
Популярное

Сетевой ИБП мощностью до 2000Вт для УМЗЧ

(20 голосов)

 

Image
кликните по картинке чтобы увеличить

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Управляющим контроллером в данном блоке питания служит TL494. После контроллера стоит полумостовой драйвер IR2110, который собственно и управляет затворами силовых транзисторов. Использование драйвера позволило отказаться от согласующего трансформатора, широко используемого в компьютерных блоках питания. Драйвер IR2110 нагружен на затворы через ускоряющие закрытие полевиков цепочки R24-VD4 и R25-VD5.
    Силовые ключи VT2 и VT3 работают на первичную обмотку силового трансформатора. Средняя точка, необходимая для получения переменного напряжения в первичной обмотке трансформатора формируется элементами R30-C26 и R31-C27.
      Последовательно с первичной обмоткой силового трансформатора включен трансформатор тока TV1, позволяющий контролировать протекающий через силовые ключи ток и строить на этом токовую защиту. Кроме этого используя выходное напряжение с трансформатора тока можно управлять оборотами вентилятора принудительного охлаждения (VT4).
 Стабилизация силовых напряжений производится при помощи дросселя групповой стабилизации L1.
 Емкость фильтров первичного питания рассчитывается из отношения 1 мкФ на 1 Вт выходной мощности, а силовые транзистора должны иметь максимальный ток минимум на 30% больше чем ток, протекающий через первичную обмотку силового трансформатора при максимальной мощности.
Несколько слов об алгоритме работы данного блока питания:
    В момент подачи сетевого напряжения 220 В емкости фильтров первичного питания С15 и С16 заражаются через резисторы R8 и R11, что не позволяет перегрузиться мосту VD током короткого замыкания полностью разряженных С15 и С16. Одновременно происходит зарядка конденсаторов С1, С3, С6, С19 через линейку резисторов R16, R18, R20 и R22, стабилизатор 7815 и резистор R21.
    Как только величина напряжения на конденсаторе С6 достигнет 12 В стабилитрон VD1 "пробивается" и через него начинает течь ток заряжая конденсатор C18 и как только на плюсовом выводе этого конденсатора будет достигнута величина достаточная для открытия тиристора VS2 он откроется. Это повлечет включение реле К1, которое своими контактами зашунтирует токоограничивающие резисторы R8 и R11. Кроме этого открывшийся тиристор VS2 откроет транзистор VT1 и на контроллер TL494 и полумостовой драйвер IR2110. Контроллер начнет режим мягкого старта, длительность которого зависит от номиналов R7 и C13.
    Во время мягкого старта длительность импульсов, открывающих силовые транзисторы, увеличиваются постепенно, тем самым постепенно заряжая конденсаторы вторичного питания и ограничивая ток через выпрямительные диоды. Стабилизация выходного напряжения происходит путем изменения длительности импульсов управления силовыми транзисторами при неизменной частоте. Это возможно лишь при условии, когда величина вторичного напряжения силового трансформатора выше требуемой на выходе стабилизатора минимум на 30%, но не более 60%. При увеличении нагрузки выходное напряжение начинает уменьшаться, светодиод оптрона начинает светиться меньше, транзисторы оптрона закрывается, тем самым увеличивая длительность импульсов управления до тех пор, пока действующее напряжение не достигнет величины стабилизации. При уменьшении нагрузки напряжение начнет увеличиваться, светодиод оптрона IC1 начнет светиться ярче, тем самым открывая транзистор и уменьшая длительность управляющих импульсов до тех пор, пока величина действующего значения выходного напряжения не уменьшиться до стабилизируемой величины. Величину стабилизируемого напряжения регулируют подстроечным резистором R26.
    Следует отметить, что контроллером TL494 регулируется не длительность каждого импульса в зависимости от выходного напряжения, а лишь среднее значение, т.е. измерительная часть имеет некоторую инерционность. Однако даже при установленных конденсаторах во вторичном питании емкостью 2200 мкФ провалы питания при пиковых кратковременных нагрузках не превышают 5 %, что вполне приемлемо для аппаратуры HI-FI класса. Мы же обычно ставим конденсаторы во вторичном питании 4700 мкФ, что дает уверенный запас на пиковые значения, а использование дросселя групповой стабилизации L1 позволяет контролировать все  выходные напряжения.
    Данный импульсный блок питания оснащен защитой от перегрузки, измерительным элементом которой служит трансформатор тока TV1. Как только ток достигнет критической величины, открывается тиристор VS1 и зашунтирует питание оконечного каскада контроллера. Импульсы управления исчезают, и блок питания переходит в дежурный режим, в котором может находиться довольно долго, поскольку тиристор VS2 продолжает оставаться открытым - тока протекающего через резисторы R16, R18, R20 и R22 хватает для удержания его в открытом состоянии.
    Для вывода блока питания из дежурного режима необходимо нажать кнопку SA3, которая своим контактами зашунтирует тиристор VS2, ток через него перестанет течь и он закроется. Как только контакты SA3 разомкнуться транзистор VT1 закроется, тем самым снимая питание с контроллера и драйвера. Таким образом схема управления перейдет в режим минимального потребления - тиристор VS2 закрыт, следовательно реле К1 выключено, транзистор VT1 закрыт, следовательно контроллер и драйвер обесточены. Конденсаторы С1, С3, С6 и С19 начинают заряжаться и как только напряжение достигнет 12 В откроется тиристор VS2 и произойдет запуск импульсного блока питания.
    При необходимости перевести блок питания в дежурный режим можно воспользоваться кнопкой SA2, при нажатии на которую будут соединены база и эмиттер транзистора VT1. Транзистор закроется и обесточит контроллер и драйвер. Импульсы управления исчезнут, исчезнут и вторичные напряжения. Однако питание не будет снято с реле К1 и повторного запуска преобразователя не произойдет.
   Немного о деталях:
    Силовой трансформатор мы изготавливаем на сердечниках от строчных трансформаторов телевизоров. Однако схожие параметры можно получить и на ферритовых кольцах, правда частоту преобразования не стоит поднимать выше 70 кГц, поскольку даже уже на этой частоте феррит 2000 начинает греться из за внутренних потерь. В качестве дросселя групповой стабилизации мы используем сердечник от ТПИ. Обмотки располагаются встречно, как показано на принципиальной схеме. Сечение проводников рассчитывается из отношения 3-4 А на мм кв. Обмотки наматываются до заполнения окна. В случае использования в качестве сердечника для дросселя групповой стабилизации ферритового кольца лучше использовать кольцо К40х25х11. Обмотки мотаются до уменьшения отверстия внутри до 14...16 мм. В качестве дополнительных фильтрующих индуктивностей мы используем сердечники от фильтров сетевого питания телевизоров, но эти фильтры можно намотать и на кольцах диаметром 20...25 мм. Обмотка мотается до заполнения, тем же проводом, что и дроссель групповой стабилизации.
   Для регулировки в качестве нагрузки следует все силовые напряжения нагрузить резисторами мощностью 2 Вт и сопротивлением 4,7к...6,8к. При выходном напряжении 60...90 В это будет имитировать ток покоя усилителей мощности. При более низком выходном напряжении сопротивление следует немного уменьшить.

 

Источник:  http://interlavka.narod.ru

 

 

Комментарии 

 
#1 Дмитрий Шиндер 23.01.2022 23:47
Добрый вечер, а можно эту схему использовать для автомобильного усилителя. Питание 12-100вольт, около 1500 ватт?
 

Комментарии могут оставлять только зарегистрированные пользователи

< Пред.   След. >
Похожие материалы: