Как известно, источником электромагнитного поля является переменный электрический ток, текущий по проводнику. А устройство, создающее электромагнитное поле в пространстве, представляет собой генератор переменного тока, соединенный с антенной. Антенна излучает электромагнитные волны в окружающее пространство. Такое устройство принято называть радиопередающим.
Мы знаем, что в окружающем нас пространстве имеются электромагнитные волны, излучаемые этими устройствами, знаем частоту передачи, знаем, что волны несут для нас информацию. Поэтому нам важно получить техническое средство, с помощью которого мы сможем преобразовать информацию, содержащуюся в электромагнитной волне, к такому виду, который возможен для восприятия нашими органами чувств. В данном случае мы хотим преобразовать ее в звуковые колебания. Так вот, устройство, перехватывающее электромагнитную волну и преобразующее ее в удобный для восприятия вид, называется радиоприемным устройством.
Вопрос второй. Каким образом «насытить» электромагнитную волну необходимой информацией? Самый простой способ — поступить по принципу: есть волна — нет волны. Первые радиопередающие и радиоприемные устройства были спроектированы именно по такому принципу, а для передачи информации приняли азбуку Морзе. К слову сказать, столь примитивный способ передачи информации оказался настолько надежным и помехоустойчивым, что его используют до сих пор, называя «телеграфным» способом.
В начале XX века телеграфная радиосвязь изумила многих, но в дальнейшем, когда к ней привыкли, появилось желание передавать не только точки-тире, но еще и голос. Задача оказалась не слишком простой — ведь диапазон частот, слышимый человеческим ухом, лежит в низкочастотной области, а именно от 16 Гц до 10 кГц. В то же время для получения эффективного излучения электромагнитной энергии необходимы высокочастотные колебания. Как же быть?
Задачу решили наложением низкочастотного сигнала на высокочастотные колебания, а сам процесс наложения назвали модуляцией. Математически процесс модуляции иллюстрируется очень просто. К примеру, периодическое электрическое колебание можно записать так:
где Um-амплитуда колебания
ω0- частота колебания
φ0- фаза колебания
Процесс модуляции представляет собой изменения одного из параметров колебания высокой частоты по закону управляющего низкочастотного сигнала. В зависимости от того, какой параметр (амплитуда, частота, фаза) подвергается изменению, различают амплитудную, частотную и фазовую модуляции.
Колебания высокой частоты, используемые для передачи сигналов, носят название несущей частоты.
Исторически первой появилась амплитудная модуляция. Она до сих пор используется на радиовещательных диапазонах длинных, средних и коротких волн несмотря на то, что обладает низкой помехозащищенностью и крайне неэффективна. Причин тому несколько. Во-первых, коротковолновый диапазон — это единственный диапазон, в котором сравнительно просто обеспечивается радиовещание по всему миру. Для коротких волн не нужны ретрансляторы — они сами достигают нужных точек за счет отражения. Во-вторых, конструктивные особенности радиоприемников, имеющихся в эксплуатации, не позволяют перейти на более эффективные способы радиовещания.
Давайте кратко рассмотрим особенности амплитудной модуляции. Для простоты будем считать, что управляющим сигналом служит гармоническое (синусоидальное) колебание. Выражение для амплитудно-модулированной несущей запишется следующим образом:
где Ω- частота управляющего сигнала
Кривая, соединяющая точки, соответствующие амплитудным значениям несущей, называется огибающей. Базовый параметр, характеризующий AM колебание, — это коэффициент модуляции. В других источниках может встретиться понятие глубины модуляции, что по сути одно и то же.
Коэффициент модуляции не должен быть слишком маленьким, в противном случае мы не сможем различить полезную информацию на фоне несущей. Однако, если его значение будет больше 1, это вызовет перемодуляцию и, как следствие, искажение информации. Поэтому стандартное значение m в радиовещательной технике равно 0,3. В этом случае при наиболее громких звуках не наступает перемодуляция.
Здесь уместно рассказать о таком понятии, как спектр радиосигнала. Уже знакомая нам гармоническая функция изображается синусоидой во временной области, то есть в такой, где по горизонтальной оси графика откладывается время. Но существует еще одна широко используемая область — частотная, в которой гармоническое колебание выглядит так, как показано на рисунке, то есть вертикальной черточкой. Обратите внимание: по горизонтальной оси откладывается уже не время, а частота.
Важно отметить, что спектр периодического, но несинусоидального колебания представляет собой набор синусоидальных «дискрет», вертикальных черточек.
Французским математиком Ж. Фурье (1768—1830) было доказано, что любой несинусоидальный сигнал можно по определенному правилу составить из суммы гармонических функций. Как показала практика, производить расчеты в частотной области намного проще и нагляднее, чем заниматься тем же делом в области временной. Таким образом, анализ Фурье занял в радиотехнике одно из ведущих мест.
Следует также сказать, что непериодические сигналы, к которым относится речь человека и музыка, тоже подчиняются анализу Фурье, только их спектр уже не дискретный, а сплошной, что и отражено на рисунке.
Амплитудно-модулированное колебание это периодический сигнал, который уже не имеет гармонического характера. Спектральный состав AM сигнала легко оценить, если преобразовать его аналитическое выражение с помощью известной формулы произведения синусов. В результате получим
Хорошо видно, что спектр AM колебания содержит, кроме несущей, две боковые частоты: (ω0 - Ω) и (ω0 + Ω).
Для передачи разборчивой речи необходимо, чтобы передатчик имел возможность модулировать несущую на любой из частот, лежащих в полосе от 250 Гц (ΩH) до 3 кГц (ΩВ). Спектр AM колебания в этом случае будет иметь, кроме несущей, две зеркально-симметричные боковые полосы, в точности повторяющие форму спектра низкочастотного сигнала.
В заключение краткого рассказа об AM сигналах предлагаю оценить эффективность такого вида радиовещания с точки зрения использования мощности передатчика. Действительно, как уже было сказано, коэффициент модуляции в стандартных условиях радиовещания не превосходит 0,3. Амплитуда каждой из боковых полос составляет m/2, то есть 0,15 амплитуды несущей. Мощность, квадратично зависящая от амплитуды сигнала, в данном случае составляет 0,0225 от мощности несущей. Представьте себе: менее 5% сигнала несет полезную информацию, которая содержится в боковых полосах и более нигде! Осознали этот факт достаточно поздно, когда радиовещание на основе классической AM модуляции стало стандартом.
Поиски более удачных, более эффективных и более помехозащищенных способов радиовещания привели к тому, что в 1935 году была предложена система с угловой модуляцией. Угловая модуляция — это модуляция посредством частоты несущей или ее фазы при постоянстве амплитуды. Данный вид модуляции лежит в основе радиовещания на УКВ. В начале рассказ о фазовой модуляции (ФМ). Предположим, что модуляцию несущей осуществляет гармоническое колебание. Тогда закон изменения фазы несущей
где φо — начальная фаза колебания.
Подставляя выражение для фазы в аналитическое выражение несущей, получаем
Важно заметить, что величина ΔφsinΩt характеризует опережение (отставание) по фазе модулированного сигнала от фазы, которую имел бы немодулированный сигнал.
Мгновенное значение фазового угла модулированного ФМ колебания определяется из выражения
Угловая частота колебания является производной фазового угла по времени:
где ΔφΩ = Δω — амплитуда отклонения частоты ω от частоты Θ.
Физический смысл полученного соотношения таков: меняя фазу колебания, мы неизбежно меняем и его частоту, причем величина отклонения частоты зависит как от амплитуды модулирующего сигнала, так и от его частоты. Величина максимального фазового отклонения весьма просто связана с максимальным частотным отклонением — девиацией:
где Δω — девиация частоты; β — индекс модуляции
На практике девиацию обычно выражают не в рад/с, а в Гц, что в 2π раз меньше.
Теперь настало время рассмотреть частотную модуляцию (ЧМ) при воздействии синусоидального управляющего сигнала. Обозначим амплитуду отклонения частоты через Δω:
После преобразований получим аналитическое выражение ЧМ
колебания:
Обозначим:
Тогда
Хорошо видно, что при изменении частоты несущей меняется и ее фаза. Более того, мы пришли к выражению, которое было выведено в рассказе об ФМ. Может сложиться впечатление, что ЧМ и ФМ одно и то же. Действительно, рассматривая частный случай (модулирование синусоидальным сигналом), мы получим идентичные спектры и не заметим разницы. Однако разница проявится, как только управляющий сигнал перестанет быть гармоническим. Причина в индексе модуляции и его зависимости от входного воздействия.
|
|
Нетрудно заметить, что ФМ обеспечивает постоянный индекс модуляции при любой модулирующей частоте. Для ЧМ индекс модуляции понятие менее определенное, поскольку он меняется с изменением модулирующей частоты. Отсюда можно сделать заключение, что спектры колебаний ЧМ и ФМ вида будут несколько отличаться друг от друга. Но как быть с индексом модуляции для ЧМ, как определить его? В радиотехнике принято оценивать индекс модуляции для максимальной модулирующей частоты. Для более низких частот индекс модуляции становится больше.
Осталось оценить вид и ширину спектра сигнала с угловой модуляцией. При небольших индексах модуляции (β < 0,5) выражение для модулированного ЧМ и ФМ сигнала может быть приведено к виду:
He правда ли, знакомое выражение? Давайте взглянем на такое же точно выражение для AM сигнала, чтобы убедиться — память нас не подвела. При малых фазовых отклонениях амплитудные спектры АМ, ФМ и ЧМ сигналов идентичны. Различие наблюдается лишь в фазовых спектрах, но это более тонкий анализ, и мы не будем на нем заострять внимание.
Если индекс модуляции таков, что уже более нельзя пользоваться простыми соотношениями, на помощь приходит анализ Бесселя, позволяющий представить сигнал с угловой модуляцией более наглядно:
Видно, что в спектре сигнала появляются боковые частоты с индексами «к». При возрастании β амплитуды боковых частот высших порядков начинают быстро расти, а амплитуда несущей — уменьшаться. Возможен даже такой вариант, когда амплитуда несущей и боковых полос первого порядка станут равными нулю!
Угловая модуляция, при которой наблюдается заметное появление боковых полос высших порядков, называется широкополосной.
Точно определить ее спектр при воздействии непериодического сигнала - задача намного более трудоемкая, чем такая же задача исследования АМ. Приближенно считают, что ширина спектра радиовещательного широкополосного ЧМ сигнала
где В – ширина спектра модулированного сигнала
Ωв – верхняя модулирующая частота сигнала.
Можно также определить ширину спектра и через девиацию частоты
Итак, чтобы принять радиопередачу без заметных на слух частотных искажений, необходимо учитывать наличие не только боковых полос первого порядка, но еще и полос высших порядков.
|
Комментарии