Трансформаторы |
Трансформатор - неподвижный (статический) электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты. Простейший трансформатор состоит из замкнутого ферромагнитного сердечника и двух обмоток. Обмотка, подключенная к генератору, называется первичной. Обмотка, к которой подключена нагрузка, называется вторичной. Работа трансформатора основана на явлении электромагнитной индукции.Переменный ток, протекающий по первичной обмотке, создает в сердечнике трансформатора переменный магнитный поток Ф, который, пронизывая обмотки. индуктирует в каждом витке некоторую э. д. с. (Е). Действующее значение э. д. с., определяется по формуле
где Е-действующеезначение э.д. с.; ω-число витков; f-частота,Гц; Φm-амплитудное значение магнитного потока, вб. Если принять число витков ω=1, то E=4,44fΦm
Электродвижущие силы, наводимые магнитным потоком Φ, в обмотках трансформатора будут, очевидно, пропорциональны количеству витков. Если числа витков первичной и вторичной обмоток обозначить соответственно ω1 и ω2, то для действующего значения э. д. с. самоиндукции первичной обмотки (Е1) будем иметь Е1=ω1Е, аналогично э. д. с. взаимоиндукции вторичной обмотки Е2=ω2Е. Отношение
называют коэффициентом трансформации и обозначают буквой К:
Если трансформатор не нагружен ( т. е. цепь вторичной обмотки разомкнута), то напряжение на ее зажимах равно э. д. с. (U2=E2). В тоже время, поскольку первичная обмотка обладает относительно большим индуктивным сопротивлением и ток потребляемый ею от сети, невелик, можно пренебречь падением напряжения на ее активном сопротивлении. Тогда приложенное к первичной обмотке напряжение будет численно равно э. д. с . самоиндукции (U1≈E1). Итак при отсутствии нагрузки U1≈E1 и U2=E2. Следовательно, отношение Е1/Е2 можно заменить отношением U1/U2, т. е.
Таким образом, коэффициент трансформации есть отношение напряжения на зажимах первичной обмотки к напряжению на зажимах вторичной обмотки при отсутствии нагрузки ( или, как принято говорить, при холостом ходе трансформатора). В зависимости от величины коэффициента трансформации трансформаторы подразделяются: - на повышающие ω1<ω2; U1<U2; К<1; - на понижающие ω1>ω2; U1>U2; К>1; - на переходные ω1=ω2; U1=U2; К=1.
Анализ работы трансформатора.
1. Режим холостого хода В этом режиме вторичная обмотка разомкнута. Переключатель находится в положении 1.Ток потребляемый первичной цепью минимален и называется током холостого хода. Магнитное поле вокруг первичной обмотки называется магнитным полем холостого хода.Этот режим безвреден для трансформатора. 2. Работа трансформатора в режиме нагрузки Включим переключатель в положение 2, при этом трансформатор из режима холостого хода переходит в режим нагрузки. По вторичной обмотке протекает ток I2, магнитный поток которого согласно закону Ленца направлен против магнитного поля первичной обмотки Φ. В результате этого магнитный поток Φ в первый момент уменьшается, что вызывает уменьшение э. д. с. самоиндукции Е1 в первичной обмотке трансформатора. Поскольку приложенное напряжение U1 (сети, генератора) при этом остается неизменным, то электрическое равновесие между напряжением и э. д. с. самоиндукции нарушается и происходит увеличение тока в первичной обмотке. Увеличение тока приводит к увеличению магнитного потока, что в свою очередь вызывает увеличение э. д. с. самоиндукции. Этот процесс продолжается до тех пор, пока не восстановится электрическое равновесие между приложенным напряжением и э. д. с. самоиндукции. Но при этом ток первичной обмотки будет больше, чем при холостом ходе, т. е. суммарный магнитный поток первичной и вторичной обмоток трансформатора в режиме нагрузки равен магнитному потоку первичной обмотки в режиме холостого хода. Итак, в режиме нагрузки, т. е. при появлении вторичного тока, первичный ток возрастает, во вторичной обмотке создается падение напряжения и вторичное напряжение уменьшается. При уменьшении нагрузки, т. е. при уменьшении вторичного тока, размагничивающее действие вторичной обмотки уменьшается, магнитный поток в сердечнике в первый момент возрастает и соответственно возрастает э. д. с. самоиндукции Е1. Электрическое равновесие между U1 и Е1 нарушается, ток в первичной обмотке уменьшается, При этом происходит уменьшение магнитного потока и э. д. с. самоиндукции. Этот процесс продолжается до тех пор, пока не восстановится временно нарушенное электрическое равновесие между U1 и Е1, но при меньшем токе I1. Итак, уменьшение тока I2 приводит к уменьшению тока I1, падение напряжения во вторичной обмотке трансформатора уменьшается и вторичное напряжение возрастает. Всякое изменение вторичного тока вызывает изменение первичного тока, направленное на поддержание в сердечнике трансформатора постоянного по величине магнитного потока. А теперь включим переключатель в положение 4. Сопротивление вторичной цепи практически будет равным нулю. Ток вторичной цепи будет максимальным, магнитное поле вторичной обмотки будет максимальным. Магнитное поле первичной обмотки уменьшится и станет минимальным, следовательно и индуктивное сопротивление первичной обмотки станет минимальным.Ток потребляемый первичной цепью возрастет до максимума. Такой режим называется режимом короткого замыкания. Этот режим опасен для трансформатора и всей цепи. Для защиты от КЗ устанавливают предохранители в первичной или во вторичной цепи. Может ли трансформатор получить выигрыш в мощности? Мощность развиваемая в первичной цепи равна произведению U1*I1 во вторичной цепи U2*I2. Трансформатор выигрыша в мощности не дает так как всякое увеличение напряжения с помощью трансформатора сопровождается соответствующим уменьшением тока, т. е. во сколько раз трансформатор увеличит напряжение во столько раз он уменьшит величину тока во вторичной цепи. В понижающем трансформаторе во сколько раз трансформатор уменьшит напряжение во столько раз увеличит величину тока во вторичной цепи. К. п. д. трансформатора
|
< Пред. | След. > |
---|
Комментарии