Яндекс.Метрика
Главная

Физики ДВФУ смоделировали модуль магнитной компьютерной памяти нового типа

Ученые Дальневосточного федерального университета (ДВФУ) предложили новую концепцию так называемой беговой памяти — магнитной компьютерной памяти, работающей на спиновом токе. Устройства на таком типе памяти будут способны хранить больший объем информации по сравнению с современными флеш-накопителями и жесткими дисками. Скорость чтения, записи и время хранения данных также возрастут. Статья об этом опубликована в авторитетном научном журнале Scientific Reports. Модули беговой памяти (англ. racetrack memory) ученые предлагают изготавливать по принципу сэндвича: тяжелый металл (платина, рутений, тантал и т.д.) покрывается слоем ферромагнетика толщиной около 1 нанометра, который сверху закрывается еще одним слоем тяжелого металла. В процессе построения модуля используется принцип наноструктурирования, что делает эту технологию быстрее, проще и дешевле по сравнению с другими.

 

Носителем информации в модуле будет выступать скирмиониум, топологически устойчивый вихреподобный участок намагниченности — более совершенный аналог скирмиона.

«Топологические особенности скирмиониума позволяют существенно повысить плотность записи информации. Мы также исследовали его стабильность под воздействием тока, чтобы определить технологические условия и режимы работы нашей памяти. В скирмиониуме нам удалось снять ограничения, свойственные скирмиону. В частности, нивелировать силу Магнуса, действие которой приводило к потере данных», — пояснил один из авторов работы, научный сотрудник лаборатории пленочных технологий Школы естественных наук ДВФУ Александр Колесников.

 

Ученые показали стабильность скирмиона и скирмиониума до радиусов 2 и 15 нанометров, соответственно. Если пересчитать в плотность записи, это для первого случая она составит около 50 Терабит/кв. дюйм, для второго около 1 Терабит/ кв. дюйм. У современных HDD плотность записи — порядка 1 Терабит/ кв. дюйм.  

«Поскольку мы предлагаем прототип ячейки памяти, а не готового устройства, корректного сравнения скорости записи провести нельзя. В готовом устройстве число физических элементов, производящих запись информации, может отличаться. Максимальные значения для современных устройств HDD — около 500 Мегабайт/секунду. Если рассмотреть одну нашу ячейку памяти, то на запись одного бита требуется 700 пикасекунд, что соответствует скорости записи около 170 Мегабайт/секунду. Больше ячеек — выше скорость», — пояснил Александр Колесников.

Также ученые отметили, что для работы памяти на скирмиониуме не требуется внешних источников питания — она энергонезависима. Таким образом, диск на беговой памяти сохранит данные, даже если компьютер долго не будет подключен к источнику питания. Современные жесткие диски подвержены процессу размагничивания, при котором происходит полная утрата данных. Кроме того, в беговой памяти отсутствует ограничение по числу циклов записи. Это выгодно отличает технологию магнитной беговой памяти от современных SSD-дисков, которые имеют конечное количество циклов перезаписи.

Источники:

РадиоЛоцман

     dvfu.ru
 

Разработка НИТУ «МИСиС» вывела российский квантовый компьютер на мировой уровень

(1 голос)


Физики лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС» и двух институтов РАН создали самый качественный в мире усилитель сигнала для квантового компьютера. Устройство может применяться также в радиотелескопах и других приборах, работающих со сверхслабым радиоизлучением.

 

Us1.jpg

Создание квантового компьютера — одна из главных практических целей, которых пытаются достичь физики, занимающиеся изучением сверхпроводящих материалов. За счет довольно своеобразного метода вычисления квантовый компьютер может эффективно решать задачи, которые обычным компьютерам пришлось бы вычислять очень долго. Например, квантовый компьютер способен за короткое время взломать существующие системы шифрования данных или разработать новые, более высокого порядка, рассортировать данные на всех компьютерах Земли или выдать, в конце концов, точный прогноз погоды на ближайшие пару дней.

Ka1.jpg

Особенность основного элемента квантового компьютера — квантового бита или, как его сокращенно называют, кубита в том, что он может принимать не только состояния «0» или «1», но также множество промежуточных. За счет таких свойств кубита вычисления в квантовом компьютере происходят в миллиарды раз быстрее, чем в обычном.

Правда, результат вычисления квантового компьютера верен только с определенной долей вероятности, потому что состояние кубита может измениться из-за случайного воздействия. Дело в том, что величина энергии, которой оперируют физики при работе с квантовым компьютером, очень мала. Достаточно сказать, что обычный фотон из оптического диапазона, попавший в кубит, может внести в систему невообразимый хаос. Поэтому ученые работают с системами, в которых программирование кубитов происходит при помощи фотонов, обладающих длиной волны в СВЧ-диапазоне, потому что их энергия в миллион раз меньше, чем у оптических.

Одна из самых сложных задач при создании квантового компьютера — считывание информации о состоянии кубита. Сложность задачи обусловлена не только малыми энергиями считываемых фотонов, но и посторонними шумами, изменяющими состояние системы. Поэтому неотъемлемая часть таких систем — усилитель сигнала, который позволяет лучше считать информацию о фотоне. Однако именно он обычно вносит большую часть шумов, что и понижает точность вычислений. Поэтому ученым приходится проводить тысячи однотипных вычислений, чтобы повысить вероятность получить правильное решение. И хотя это все равно быстрее, чем в обычном компьютере, исследователи работают над повышением точности расчетов, чтобы сократить количество вычислений и ещё больше повысить их скорость. Поэтому создание усилителя с минимальным уровнем шума стало одной из ключевых задач построения квантового компьютера. Несколько ведущих лабораторий мира уже предложили свои решения, но купить эти разработки невозможно. И теперь российским ученым тоже удалось освоить данную технологию.

«Ученые лаборатории „Сверхпроводящие метаматериалы“ НИТУ „МИСиС“ под руководством профессора Алексея Устинова в сотрудничестве с коллегами из Института физики твердого тела РАН и Института радиотехники и электроники РАН впервые в России разработали сверхпроводящий усилитель сигнала от кубита, который издает минимально возможный уровень шума, — сообщила ректор НИТУ „МИСиС“ Алевтина Черникова. — Разработка мирового уровня обладает коммерческим потенциалом, созданные усилители могут применяться в радиотелескопах».

Ведущий научный сотрудник лаборатории «Сверхпроводящие метаматериалы» д.ф.-м.н., профессор кафедры теоретической физики и квантовых технологий Александр Карпов пояснил, что «минимально возможный уровень шума» по сути означает «издает шум на уровне вакуума». По словам ученого, создать абсолютно бесшумный усилитель невозможно в принципе, потому что фоновый шум издает даже вакуум: в нем периодически рождаются и погибают пары частица-античастица. Эти флуктуации вакуума и вносят небольшой хаос в систему. Поэтому минимальный уровень шума, который можно достичь при создании сверхпроводниковых элементов, равен вакуумному. Этот уровень называют квантовым пределом. Достичь его ученым из НИТУ «МИСиС» удалось, заменив материал, из которого изготовлен усилитель, на сверхпроводник.

«Эти усилители могут использоваться не только в квантовых компьютерах, но и в других системах из области квантовой информатики, где используется механизм считывания квантового состояния системы, — подчеркнул профессор Карпов. — Например, в датчиках космического излучения на радиотелескопах. А так как приобрести зарубежные аналоги усилителей невозможно, разработка будет иметь коммерческий спрос, по меньшей мере, на всей территории России».

Доктор Карпов отметил вклад в работу сотрудника лаборатории Ильи Беседина, а также аспиранта Ивана Токмакова.

  Источник: РадиоЛоцман

 
< Пред.   След. >
Загрузка...