Главная Карта сайта Контакты Ссылки Авторам

Яндекс.Метрика
Главная arrow Радиолюбительские схемы arrow Источники питания

Популярное
Источники питания

Импульсный блок питания 1000W на IGBT транзисторах

(3 голосов)

Силовая часть  собрана по мостовой схеме на мощных IGBT транзисорах B1- B4 (на схеме отсутствует ЭМИ фильтр). D1-D4 - диодный мост. R6 и RS1 - схема плавного включения,  обеспечивает постепенный заряд фильтрующего конденсатора С3, исключая бросок тока. С5, R7, R8 - схема запуска ШИМ контроллера. С2, R10 - демпфирующая цепь. LR1-LR2, D5-D8, R9, WR - регулировка выходного тока.

   1200w_1.jpg

Список радиодеталей силового блока:

Предохранители
F1- 5A

Транзисторы  IGBT
B1, B2, B3, B4 – G20N60
 
 Диоды
D1, D2, D3, D6 – 6A10 ( 6A 1000V)
D7, D8, D9, D10 – 4148

Конденсаторы
C1 – 2,2uF 630V
C2 – 332  630V (3300pF, 3,3nF, 0,0033 uF )
C3 – 600uF 400V, электролитический
C4 – 220uF 400V, электролитический
C5 – 22uF 400V, электролитический
C6 – 104 (100nF, 0,1uF)

Резисторы
RB1, RB2, RB3, RB4 – 3,3K
R5 – 10K
R6 –100/10W
R7 – 10K/2W
R8 – 120K/2W
R9 – 150
R10 – 51/10W
RW – 510, подстроечный

Реле
RS1-  12V 10A

LR1, LR2 – трансформатор тока
ферритовое кольцо 20*12*6  2000НМ, вторичная обмотка LR2 - 100 витков провода 0,12- 0,15 мм2,  первичная обмотка  LR1— перемычка, пропущенная через кольцо.

1200w_6.jpg

 

 

PM1  Блок ШИМ контроллера собран на микосхемах TL494 и IR2181, способен управлять мощными IGBT или MOSFET транзисторами с током до 60А. С помощью этого блока возможно построение мощного блока питания по мостовой схеме от 1 до 3 кВт.

   1200w_4.jpg

 1200w_5.jpg

 

Список радиодеталей ШИМ контроллера:

Микросхемы
TL494
IR2181 – 2шт.

Диоды
UF 407 – 2шт.
Zener 18V

Конденсаторы
224 (200n, 0,22uF) – 3шт
103 (10n, 0,01uF) – 2шт.
102 (1000pF, 1n) – 1шт.
100uF*35V – 1шт.
100uF*16V – 1шт.

Резисторы
10 – 4шт.
51 – 1шт.
1К – 4шт.
2К – 5шт.
10К – 1шт
15К – 1шт.
82К – 2шт.

 

Вторичные цепи с однополярным питанием и силовой трансформатор

1200w_2.jpg

Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 . Первичная обмотка N1 - 0,35*6=35 витков, N2,N3 - 0,55*10=6+6 витков, N4-0,55=3 витка, N5 - 0,55=2 витка.

Дроссель L1 изготовлен на сердечнике ЕЕ55 материал N87 0,55*20=9 виков

Стабилизатор V1 - 12V, питание вентилятора и реле Rs1. Стабилизатор V2 - 18V, питание Шим контроллера. WR1 - регулировка выходного напряжения.

 

 Вторичные цепи с двухполярным питанием и силовой трансформатор

 1200w_3.jpg

   

Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 (при расчете программой Lite-CalcIT, размер сердечника: E 42/21/20 N87) . Первичная обмотка N1 - 0,35*6=35 витков, N2,N3 - 0,55*4=9+9 витков, N4-0,55=3 витка, N5 - 0,55=2 витка.

Дроссель L1а L1b  изготовлен на сердечнике ЕЕ55 материал N87 0,55*10=9+9 виков (противоположное направление намотки).

Стабилизатор V1 - 12V, питание вентилятора и реле Rs1. Стабилизатор V2 - 18V, питание Шим контроллера. WR1 - регулировка выходного напряжения.

 

 

 

 

 

Импульсный блок питания 1000W

(1 голос)

 

Импульсный блок питания собран по мостовой схеме на ШИМ контроллере SG3525 и MOSFET транзисторах IRFP460. Мощность 1000 Вт, выходное напряжение 2*70 вольт.
1000w_smps_shema.PNG

Полезные ссылки:

Расчет и применение трансформатора управления затворами (GDT, Gate Drive Transformer)

ExcellentIT  — расчёт импульсного трансформатора двухтактных мостовых, полумостовых и push-pull преобразователей.

Расчет трансформатора тока

Программа расчета частоты для микросхем  SG3525

SG3525.pdf

 

 

smps_1000w.jpg

 

 1000w_smps_lay1.png

 

 

1000w_smps_lay.jpg

 

1000w_smps1.jpg

 http://320volt.com/2x70v-1000w-smps/

 

Схема и печатная плата (Proteus):

http://320volt.com/wp-content/uploads/2008/01/2-70v-1000w-smps.rar

 

Импульсный преобразователь 0-100В 8А

(2 голосов)

 

 power-supply-0V-100V-2A.jpg


 
Этот преобразователь dc- dc обеспечивает выходное напряжение в  диапазоне от 0 до100В при выходном токе 2А (максимальный выходной ток при боле низком напряжении  до 8А).  Схемы источников питания с небольшим диапазоном выходных напряжений и токов довольно часто встречаются в интернете и доступны в большинстве  магазинов, но более мощные блоки питания найти проблематично. Этот источник питания удовлетворит большую часть потребностей радиолюбителя. Единственный недостаток этой схемы  – дорогостоящие компоненты, но если посмотреть на цены устройств с подобными характеристиками этот недостаток компенсируется.
Основной компонент схемы, ИМС (U1) LT1270 - высокоэффективный импульсный  регулятор  с током до 10А.  Схема преобразователя выполнена с топологией  SEPIC  (напряжение на входе преобразователя может быть как выше, так и ниже выходного напряжения).
Преобразователь разработан для работы с входным  постоянным напряжением  от 40В до 60В. Его можно получить с помощью выпрямителя, собранного из трансформатора мощностью более 200W, диодного моста и конденсатора ( не показаны на схеме).
 Выходное напряжение источника питания  линейно изменяется от 0В до 100V с помощью потенциометра R20.
Ток ограничен двумя независимыми петлями. Первый предел тока контролируется в диапазоне от 0А до 8А установкой потенциометра R21. Этот параметр не будет зависеть от выходного напряжения. Вторая петля ограничивает наивысший возможный ток в зависимости от напряжения (R1-R5 и U2). Оптимальный доступный выходной ток является самым высоким в конфигурациях с низким выходным напряжением (около 8А), и сводится к 2А на выходе при 100В.
Трансформатор Т1 выполнен на сердечнике MPP 55076 фирмы  Magnetics (размер 35,8*22,4*10,5; проницаемость 60 µ). Его можно заменить сердечниками из других порошковых материалов, например  High Flux 58076 или Kool µ 77076. Первичная и вторичная обмотки по 57 витков медного провода 20 AWG (диаметр 0.8мм).
MPP (молибден-пермаллой) - смесь порошков, состоящая из 79% никеля, 17% железа и 4% молибдена. Молибден-пермаллой имеет наименьшие среди всех порошковых материалов потери на вихревые токи и перемагничивание, превосходную стабильность проницаемости при значительном подмагничивании постоянным током.
Дроссель L1 выполнен на сердечнике MPP 55380 – A2 имеет 18 витков проводом 18 AWG.

 

http://circuitswiring.com/bench-variable-power-supply-0v-100v-2a/

Файлы:

LT1270 datasheet

Magnetics core

Ссылки:

Примерное соответствие сердечников из МО-пермаллоя МП (Россия),
сердечникам  MPP

Кольцевые сердечники Magnetics

фирма БЭК

Феррит холдинг

Таблица перевода кабеля и провода AWG в миллиметры, мм

 

 

 

 

 

Импульсный источник питания (SMPS) 3-60V, 40A, 2400W

(11 голосов)

Импульсный источник питания (SMPS) 3-60V 40A
кликните покартинке чтобы увеличить изображение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Это импульсный источник питания был сделан, потому что мне был необходим мощный регулируемый источник питания для лабораторных целей. Линейный источник питания не подходит  для мощности  в 2400W. Поэтому я выбрал полумостовую схему  импульсного преобразователя. Переключение IGBT транзисторов управляется схемой  на UC3845. Схему источника питания вы можете увидеть выше. Напряжение сети проходит через фильтр ЭМС. Затем выпрямляется и фильтруется на конденсаторе С4. В связи с большим пусковым током, применена схема плавного включения  на реле Re1 и  резисторе R2. Катушка реле и вентилятор  питаются от  напряжения 12В, которое получается с помощью гасящего резистора R2 из входного напряжения U2 17V. Вспомогательная схема питания построена на TNY267. R27 обеспечивает защиту от понижения напряжения вспомогательного источника - не включается, когда менее 230 В постоянного напряжения. Схема управления на UC3845 имеет выходную частоту 50 кГц и 47% рабочего цикла. Питание  микросхемы осуществляется через стабилитрон, который уменьшает напряжение питания 17В-5.6В= 11,4V а также сдвигает пороги UVLO до 13,5 В и 14,1 В. Преобразователь запускается при 14.1 V и отключается при напряжении  ниже 13,5 V, тем самым  защищая от насыщения транзисторы IGBT.. Управление  MOSFET транзисторами, осуществляется через трансформатор TR2, обеспечивая гальваническую развязку. Обратная связь по напряжению подключена с выхода на контакт 2 IO1. Выходное напряжение блока питания регулируется с помощью потенциометра Р1.  В гальванической развязке нет необходимости, потому что цепь управления подключена к вторичной стороне SMPS и, таким образом отделена от сети. Обратная связь по току подается через трансформатор тока ТР3 на вывод 3 IO1. Пороговый ток токовой защиты регулируется Р2.
Транзисторы Т5 и Т6, диоды D5, D5, D6, D6, D7, D7, и диодный мост должны быть установлены на радиаторе. Диод D7, конденсаторы С15 и защитные цепи R22 + D8 + C14 должены быть размещены как можно ближе к IGBT. LED 1 указывает наличие напряжения сети, LED 1 показывает текущий режим (перегрузка / короткое замыкание) или ошибку. Силовой трансформатор Tr1 я использовал от источника питания PowerFULL 56V. Коэффициент трансформации составляет около 3: 2 до 4: 3, сердечник (EE формы) без воздушного зазора (для расчета своего трансформатора можно воспользоваться программами Владимира Денисенко ) . Tr2, имеет три обмотки по 16 витков каждая. Все обмотки намотаны за один раз, тремя изолированными проводами. Для TR2 использован ферритовый сердечнике EI (EE) без воздушного зазора. Я сделал его из трансформатора блока питания ПК ATX или AT. Сердечник  имеет поперечное сечение от около 80 до 120 мм2. Трансформатор тока TR3 намотан на кольцевом сердечнике из феррита. Первичная обмотка 1 виток, вторичная 68 витков.  Размер и число витков не является критическим. В  случае ошибки, требуемая регулировка производится с помощью R15. Вспомогательный силовой трансформатор TR 4 наматывается на ферритовом сердечнике EE с воздушным зазором и сечением приблизительно от 16 до 25 мм2. Его можно изготовить  из вспомогательного силового трансформатора БП ATX. Начала обмоток трансформатора (отмечены точками) должны быть соблюдены. Дроссель выходной фильтра взят  из микроволновой печи. Максимальная входная мощность этого источника около 2600W, эффективность при полной нагрузке более 90%. В этом импульсном источнике питания использованы IGBTs типа STGW30NC60W. Они могут быть заменены на IRG4PC40W, IRG4PC50W, IRG4PC50U, STGW30NC60WD или аналогичные достаточной мощности. Выходные диоды : HFA25PB60 / DSEI30-06A или один  DSEI60-06A / STTH6010W / HFA50PA60C (верхняя половина); DSEI60-06A / STTH6010W / HFA50PA60C или четыре HFA25PB60 / DSEI30-06A (нижняя половина). Радиатор диодов должен рассеивать потери примерно 60 Вт.  Для IGBT транзисторов, это значение около 50 Вт. Потребление источника питания  в режиме ожидания составляет всего 1 Вт.

Внимание!!! большинство цепей блока питания подключены к сети. Конденсаторы сохраняют опасное напряжение даже после отключения. Выходное напряжение может быть не безопасно. Источник питания имеет высокую мощность, поэтому вход переменного тока должен иметь соответствующий предохранитель, розетки и кабель, в противном случае существует риск возникновения пожара. Все, что вы делаете, вы делаете это на свой страх и риск.



  Перевод статьи: High power adjustable switching power supply (SMPS) 3-60V 40A

  Источник: http://danyk.cz




 

Регулируемая электронная нагрузка.

(0 голосов)

el-load-circuit.jpg

С помощью этой электронной нагрузки можно провести испытания различных источников питания, зарядных устройств и аккумуляторов. Ее максимальная мощность 30W, максимальный ток 5A, напряжение 100В. Эти параметры необходимо учитывать при  ее использовании, так как их превышение может привести к поломке устройства. Например, если вы подключите источник 30В,  ток не должен превышать 1А в непрерывном режиме.
В качестве регулирующего элемента, ограничивающего ток, используется MOSFET транзистор, установленный на массивный радиатор. Величина тока проходящего через электронную нагрузку отображается на встроенном амперметре. Регулировка тока осуществляется резистором VR1. Для питания устройства используется внешний адаптер 15- 18В.

ell-load-schematic.jpg

 


Источник: http://www.electro-labs.com/

На сайте автора есть печатная плата.

 

Лабораторный источник питания

(23 голосов)

 power_ supply_3.gif

Это качественный блок питания с регулируемым стабилизированным напряжением на выходе от 0 до 30 в.  В блоке питания  есть регулировка выходного тока от 2 мА до 3А. Эта функция делает блок питания незаменимым в лаборатории, так как может ограничить максимальный выходной ток, что позволит не опасаться выхода из строя налаживаемого устройства. Существует также визуальная индикация режима стабилизации тока, защита от перегрузок и короткого замыкания. Пульсации выходного Напряжения не более 0.01 %.
 

power_ supply_schem.gif

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56 кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100 кОм триммер
P1, P2 = 10 кОм линейный потенциометр
C1 = 3300 мкФ/50V (электролитический)
C2, C3 = 47 мкФ /50V (электролитический)
C4 = 100 нФ (полиэстер)
C5 = 200 нФ (полиэстер)
C6 = 100 пФ (керамический)
C7 = 10мкф/50V (электролитический)
C8 = 330 пФ (керамический)
C9 = 100 пФ (керамический)
D1, D2, D3, D4 = 1N5402,3,4 диод 2А - RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6 В (стабилитрон)
D9 D10 = 1N4148
D11 = 1N4001 диод 1А
Q1 = BC548, транзистор NPN или BC547
Q2 = 2N2219 NPN транзистор
К3 = BC557, PNP транзистор или BC327
К4 = 2N3055 NPN транзистор
U1, U2, U3 = TL081, операционный усилитель
D12 = LED диод

power_ supply_pcb.gif

power_ supply_layout.gif

power_ supply_2.jpg

 

Источник  http://www.electronics-lab.com

 

Еще один вариант этого блока питания:

 

lb30_4.png

 lb30_5.png

 

 

 lb30_7.png

 

lb30_1.png

 

lb30_2.png

lb30_3.png

 

  Источник: http://www.electronics-lab.com/projects/power/028/index.html

 

 
<< В начало < Предыдущая 1 2 3 4 5 6 Следующая > В конец >>

Всего 1 - 6 из 35
Загрузка...